SAT.Solve
Back to table
/*
SAT
SAT.Solve
[binary() result]=SAT.Solve(Dimacs problem, int maxCount=-1);
problem : the source of the problem in the Dimacs format.
maxCount : the number of the solution expected.
result : a list of binary number, indicates the value that satisfies the SAT problem
Solve a SAT problem described in the format of DIMACS.
If maxCount=-1, it returns all the solution.
*/
//-------------------------------------------------------------------
// examples
f=Dimacs()
{
p cnf 0 0
-1 -2 0
-1 -3 0
-2 -1 0
-2 -3 0
-2 -4 0
-3 -1 0
-3 -2 0
-3 -4 0
-3 -5 0
-4 -2 0
-4 -3 0
-4 -5 0
-5 -3 0
-5 -4 0
1 2 3 0
2 1 3 4 0
3 1 2 4 0
4 2 3 5 0
5 3 4 0
}
[result]=SAT.Solve(f,2);
Print(result);
//-------------------------------------------------------------------
// result
PermuteLogicFunction Analysis IsBiUnateFunctionTo IsEqual IsInverse TwoComplement ToOrAnd ToROBDD ToVariableInvertedFunction list() LogicScript logicvardef minterm() PositiveDecimalToMantissa object() One OrAnd ToFullAnd SAT Save AutoAssignInputAndStateVariables ShannonTree Canonical SimpleCover StateDeviceName RandomGenerate AdjustLogicVariableCount Substitute Xor Zero
The website is simply translated by using the Google Translate. Please inform us if you find the wrong/funny/weird translation.